f إعط جدول تغيرات الدالة f .

تمرین 5

نعتبر الدالة g المعرفة بما يلي:

$$g(x) = -x^2 + 1 - \ln x$$

- $_{g}$ عيز تعريف الدالة $_{g}$
- $oldsymbol{D}_{g}$ عند محدات .2
 - .g'(x) (2) .3
 - 4. ضع جدول تغيرات الدالة g.
- من g(x) من يا منتنج إشارة g(1) من يا من D_a

تمرین 6

لتكن f الدالة العددية المعرفة بما يلي:

$$f(x) = x(\ln x)^2$$

- f مجموعة تعريف الدالة D_f .1
- . $\forall x \in D_f$; $f(x) = 4(\sqrt{x} \ln \sqrt{x})^2$: .2
 - D_f عند محدات D_f عند محدات
 - 4. بين أن:

• $\forall x \in D_f$; $f'(x) = (\ln(x) + 2)(\ln x)$

- 5. إعط جدول تغيرات الدالة f.
- عند $\left(C_f\right)$ عند المماس المنحنى عند $\left(C_f\right)$ عند النقطة ذات الأفصول $x_0=e$

تمرین 7

نعتبر الدالة h المعرفة على $]1;+\infty$ بما يلي:

$$\cdot h(x) = \frac{x^2}{2} \left(\frac{3}{2} - \ln x \right)$$

- $\lim_{x\to +\infty} h(x)$ أحسب.
- 2. أحسب h'(x) و تحقق من أن h'(x) يمكن كتابتها على الشكل التالي:

$$\cdot h'(x) = x(1 - \ln x)$$

- $1-\ln x > 0$ المتراجحة [1;+ ∞] المتراجحة 3.
 - 4. إعط جدول تغيرات الدالة h.

تمرين 8

نعتبر الدالة g المعرفة بما يلي:

$$\begin{cases}
g(x) = 2x(1 - \ln x) & ; \quad x \neq 0 \\
g(0) = 0
\end{cases}$$

g عيز تعريف الدالة D_{p} عيز عريف

تمرین 1

نعتبر الدالة g المعرفة بما يلي:

$$g(x) = x + 1 + \ln(x)$$

- g حدد D_{g} حيز تعريف الدالة D_{g}
- D_{g} عند محدات .2
 - 3. أدرس تغيرات الدالة ع.
- 4. بين أن منحنى الدالة g يقطع محور الأفاصيل في نقطة وحيدة أفصولها α ينتمي إلى المجال [0,27;0,28].
 - ر استنتج إشارة g(x) حسب قيم x.
 - $\ln(0,27) \simeq -1,3$ و $\ln(0,28) \simeq -1,27$

تمرین 2

لتكن f الدالة العددية المعرفة بما يلى:

$$\cdot f(x) = x - 1 - \ln(x)$$

- f مجموعة تعريف الدالة D_f محدد.
- D_f عند محدات عند عند عدد .2
 - f أدرس تغيرات الدالة f.
- . $\forall x \in \mathbb{R}_+^*$; $\ln x \le x 1$.4

تمرین 3

نعتبر الدالة h المعرفة بما يلي:

$$\cdot h(x) = x - \ln|x - 1|$$

- h حير تعريف الدالة D_h عين عريف
- $\lim_{x\to 1} h(x)$ و $\lim_{x\to \infty} h(x)$.2
 - $\lim_{x\to\infty} h(x) = +\infty$. أثبت أن:
 - $.D_h$ من x لكل h'(x) مىن.
 - h اعط جدول تغیرات الداله h
- 6. حدد تقاطع منحنى الدالة h مع المنصف الأول للمعلم.

تمرین 4

لتكن f الدالة العددية المعرفة بما يلي:

$$f(x) = \ln\left(\frac{3-x}{3+x}\right)$$

- f مجموعة تعريف الدالة f.
 - f أدرس زوجية الدالة f.
- D_f عند محدات .3
- $D_f \cap \mathbb{R}^+$ نم x ککل f'(x) میب 4.

- . $\lim_{x \to \infty} g(x)$ أحسب 2.
- 0 متصلة في 0.
- 4. أدرس قابلية اشتقاق الدالة g في 0 ثم اعط تأويلا هندسيا للنتيجة التي تم التوصل إليها.
 - .g'(x) أحسب 5.
 - g ضع جدول تغيرات الدالة g.
- ر. حدد تقاطع $\binom{C_s}{s}$ منحنى الدالة مع محوري المعلم.
 - (C_{g}) حدد الفروع اللانهائية ل .8
 - **9.** أنشئ (C_g)._____

تمرين 9

نعتبر الدالة f المعرفة بما يلي:

$$\oint f(x) = x \ln x - x + 1 ; \quad x \neq 0$$

$$\oint f(0) = 1$$

- f مجموعة تعريف الدالة D_f مجموعة عريف
 - $oldsymbol{0}$. أدرس اتصال f في f
- D_f عند محدات D_f عند محدات
 - f أدرس تغيرات الدالة f.
 - x حدد إشارة f(x) حسب قيم x

تمرين 10

لتكن $(u_n)_{n\in\mathbb{N}}$ المتتالية العددية المعرفة بما يلي:

$$\bullet \begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{2u_n} \end{cases}$$

- u_3 و u_2 و u_1 .1
- $u_n > 0$: \mathbb{N} من n نكل أن لكل 2.
- $\cdot \forall n \in \mathbb{N}; \quad v_n = \ln u_n \ln 2$. **3**
- \mathbb{N} بین أن (v_n) معرفة لكل (a)
- بين أن (v_n) متتالية هندسية محددا أساسها و حدها الأول.
- إعط الحد العام للمتتالية (v_n) بدلالة (с
 - (v_n) أحسب نهاية المتتالية (d
- $\lim u_n$ أحسب عبير الله u_n عبير الله 1.

تمرين 11

لتكن $(u_n)_{n\in\mathbb{N}}$ المتتالية العددية المعرفة بما يلي:

- $\begin{cases}
 u_0 = e \\
 u_{n+1} = \sqrt{u_n}
 \end{cases}$
 - $v_n = \ln(u_n)$: \mathbb{N} من n لكل المجزء الأول:
- الله بين أن (v_n) متتالية هندسية محددا أساسها و حدها الأول.
 - n اعط تعبير v_n بدلالة 2
 - u_n بدلالة u_n بدلالة u_n

الجزء الثانى:

- $P_n = u_0 \times u_1 \times ... \times u_n$ و $S_n = v_0 + v_1 + ... + v_n$
 - $S_n = \ln(P_n)$. بین أن:
 - n عبر عن S_n بدلالة 2
 - n استنتج تعبير P_n بدلالة n
 - انم استنتج ا $\lim S_n$ عدد.

مسألة 1

الجزء الأول: لتكن f الدالة العددية المعرفة بما يلي: $f(x) = x - \ln(x)$

- f مجموعة تعريف الدالة D_f .1
- D_f عند محدات عند عند عدد .2
 - .f'(x) .3
 - f إعط جدول تغيرات الدالة f
- $\cdot \forall x \in \mathbb{R}_+^*$; $\ln x < x$ نن: 5.

الجزء الثاني: نعتبر الدالة g المعرفة على \mathbb{R}^+ بما

$$\begin{cases}
g(x) = \frac{x}{x - \ln x} \\
g(0) = 0
\end{cases}$$

- 0 بين أن g متصلة في 0.
 - . $\lim_{x \to \infty} g(x)$ أحسب .2
- 3. أدرس قابلية اشتقاق الدالة g في g و أول النتيجة هندسيا.
 - 4. ضع جدول تغيرات الدالة g.
 - و. حدد تقاطع (C_g) منحنى الدالة g مع المستقيم ذو المعادلة y=1
 - $\cdot (C_g)$ أنشئ. 6

مسألة 2

الجزء الأول: نعتبر الدالة h المعرفة بما يلي: $h(x) = x^2 + 1 - \ln x$

- h حيز تعريف الدالة D_h عيز عريف
- $oldsymbol{D}_h$ عند محدات .2
 - D_h نكل x نكل h'(x) من.
 - h إعط جدول تغيرات الدالة h
- المجال h(x) من المجال المجال المجال المجال $[0;+\infty]$

الجزء الثانى: لتكن f الدالة العددية المعرفة بما يلي: $f(x) = x + \frac{1}{2} + \frac{\ln x}{x}$

- f مجموعة تعريف الدالة D_f مجموعة D_f
- 2. أحسب نهاية f على يمين f و أول النتيجة هندسيا.
 - $\lim_{x\to +\infty} f(x) \quad \text{im} \quad 3$
 - . $\forall x \in D_f$; $f'(x) = \frac{g(x)}{x^2}$ بين أن: .4
 - f اعط جدول تغیرات الدالة f.
- α بين أن المعادلة f(x)=3 تقبل حلا وحيدا 6. من المجال]2;3[
- 7. بین أن C_f یقبل مقاربا مائلا C_f معادلته $y=x+\frac{1}{2}$
- $\left(C_{f}\right)$ حدد إحداثيتي النقطة A تقاطع المنحنى .8 و المستقيم (D) .
- بانقطة الممأس للمنحنى $\left(C_{f}\right)$ في النقطة .A
 - $oldsymbol{.}ig(C_fig)$. أنشئ

الجزء الثالث: لُتكن F الدالة العددية المعرفة على $r^2 + r + (\ln r)^2$

$$F(x) = \frac{x^2 + x + (\ln x)^2}{2}$$
 بما یلي: $]0; +\infty[$

بين أن f هي دالة أصلية للدالة f على المجال $[0;+\infty[$

مسألة 3

الجزء الأول: لتكن g الدالة العددية المعرفة بما يلي: $g(x) = 1 + x^2 - 2x^2 \ln x$

- g عيز تعريف الدالة g .1
- D_{g} عند محدات عند عند عند .2
 - 3. حدد منحى تغيرات الدالة ع.

- g(x) = 0 بين أن المعادلة g(x) = 0 تقبل حلا وحيدا g(x) = 0 حيث x = 0 حيث x = 0
 - g(x) استنتج مما سبق إشارة

الجزء الثاني: لتكن f الدالة العددية المعرفة بما

f يلي: $f(x) = \frac{\ln x}{1+x^2}$ و و f(x)

في معلم متعامد (O,\vec{i},\vec{j}) بحيث: $\vec{i} \parallel = 2cm$ في معلم متعامد $\vec{i} \parallel = 0,1cm$

- f مجموعة تعريف الدالة f.
- D_f عند محدات عند عند عند .2
 - f عدد جدول تغیرات الداله f
 - $f(\lambda) = \frac{1}{2\lambda^2}$ نحقق من أن: 4.
- $f(\lambda)$ سعته تأطیرا ل $f(\lambda)$ سعته 5.
 - $oldsymbol{\cdot} \left(C_{_f}
 ight)$.6

مسألة 4

الجزء الأول: لتكن f الدالة العددية المعرفة بما يلي: $f(x) = \ln(x+1) - x$

- f مجموعة تعريف الدالة D_f مجموعة D_f
- D_f عند محدات .2
 - f عدد جدول تغيرات الدالة f
- . $\forall x \in \mathbb{R}_{+}^{*}; \quad 0 < \ln(1+x) < x$.4

الجزء الثانى: لتكن $(u_n)_{n\in\mathbb{N}}$ المتتالية العددية المعرفة بما يلي:

$$\begin{cases}
 u_0 = 2 \\
 u_{n+1} = \ln(1 + u_n); \forall n \in \mathbb{N}
\end{cases}$$

- $u_n > 0$: \mathbb{N} من ان لكل n 1.
- بين أن $(u_n)_{n\in\mathbb{N}}$ متتالية تناقصية.
- $(u_n)_{n\in\mathbb{N}}$ استنتج تقارب المتتالية

ذ. علي تاموسيت

tamoussit2009@gmail.com http://4maths.jimdo.com